A comparison of subspace analysis for face recognition
نویسندگان
چکیده
We report the results of a comparative study on subspace analysis methods for face recognition. In particular, we have studied four different subspace representations and their ‘kernelized’ versions if available. They include both unsupervised methods such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA), and supervised methods such as Fisher Discriminant Analysis (FDA) and probabilistic PCA (PPCA) used in a discriminative manner. The ‘kernelized’ versions of these methods provide subspaces of high-dimensional feature spaces induced by non-linear mappings. To test the effectiveness of these subspace representations, we experiment on two databases with three typical variations of face images, i.e, pose, illumination and facial expression changes. The comparison of these methods applied to different variations in face images offers a comprehensive view of all the subspace methods currently used in face recognition.
منابع مشابه
Video-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملSubspace Linear Discriminant Analysis for Face Recognition
In this paper we describe a holistic face recognition method based on subspace Linear Dis-criminant Analysis (LDA). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via Principal Component Analysis where the subspace dimension is carefully chosen, and then we use LDA to obtain a linear classiier in the subspace. The criterion we u...
متن کاملWavelet Subspace Based Integrated Face Recognition Scheme
In this paper, based on the study of the Two-Dimensional Principal Component Analysis (2DPCA), Two-Dimensional Principal Component Analysis (2DPCA) and fuzzy set theory, we propose a integrated face recognition algorithm based on wavelet subspace. This method can make good use of the advantages of each single method, and also can make up for the defect of each other. The comparison of the resul...
متن کاملVirtual Subspace Method for Robust Face Recognition Independent of Lighting Conditions
A concept of virtual subspace is introduced for realizing a robust face recognition independent of the lighting conditions. The virtual subspace is a paradoxical concept because it can be constructed even if only one image is taken. Furthermore, the virtual subspace is gradually converged to the real subspace when face images are subsequently taken. The virtual subspace is defined as an eigensp...
متن کاملA comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003